GOCECI: A new deep feed for larger apertures **Robert Purvinskis IOTA-ES**

August 2020

Introduction

- General comments & motivation
- Star catalog
- Asteroids used
- Limitations and unique properties
- Statistics
- Sample predictions

- DR2 is a VERY big catalog using the whole thing is not practical
- Few amateurs have the capability to observe the faintest stars in the catalog, so a magnitude limit of 17 is used
- Asteroids are not evenly distributed over the sky- most are in the main belt, near the ecliptic
- To avoid overlapping with other prediction feeds, a bright star limit of 14 is used.

Star catalog

Star density

• Small areas of DR2 downloaded with ViZier

- This gives an idea of the variation in star density around the sky
- For prediction catalog, separate fields are used

Star search fields

- 'GOcEcl' = "Gaia Occultations on the Ecliptic"
- Areas are 1h R.A. x 10 deg Dec
- Only stars from G mag. 14 17
- Total stars in all fields (not Milky Way): roughly 3 million

Star search fields

- 'GOcEcl' = "Gaia Occultations on the Ecliptic"
- Areas are 1h R.A. x 10 deg Dec
- Only stars from G mag. 14 17
- Total stars in field shown ('4B')
 = 97 773

- Asteroids in the main belt are mostly near the ecliptic
- They are easily selected by their orbital parameters, in particular semi major axis, eccentricity and inclination
- Near Earth objects, TNOs and other objects are not included
- Trojans and Hildas are a special case and could also be included if there is enough interest

Asteroids

Main Belt Orbits

Data set used:

- Limits on orbit diameter. (2.2 AU < a < 3.8 AU)
- Low inclination $(i < 25^{\circ})$
- Eccentricity limit also applied (e < 0.3)
- Kirkwood gaps and asteroid families visible

- 'Band of sky' near ecliptic will limit the inclinations used
- Many MB objects have low inclinations (below 10 deg) main concentration below 5 degrees.
- Perspective from Earth also has an effect

Orbit geometry

- Sufficient brightness difference needed between star and asteroid
- Object number is a rough indicator of brightness

Asteroid brightness

Objects at opposition are 1 - 2 magnitudes brighter than 35 deg elong-> avoid this area

Asteroid sizes - selected set

- Object numbers are also a proxy for size (more small objects are discovered today)
- If interested in objects with diameter > 5km, high object numbers are not needed
- (This is Main Belt: TNOs not included)

Asteroid sizes - small objects

- Object numbers are also a proxy for size (more small objects discovered today)
- If intested in objects > 5km, high object numbers not needed
- (This is Main Belt: TNOs not included)

GOcEcl unique properties

- GOCECL uses RA distributed catalog fields ('boxes')
- Allows prediction generation for different parts of the sky and month
- Can also predict for particular objects (e.g. Trojans) or parts of the sky (stationary points, star clusters)
- Milky Way fields not yet implemented : will use smaller fields

'Humpty Dumpty' events - example

Star: Mag V = 16.6; B = 17.9; R = 15.8RA = 14 7 41.5894 (astrometric) Dec = -11 42 36.950 [of Date: 14 8 47, -11 48 22]

• June 25, 2020

Prediction of 2020 Jun 21.0

- Faint star (mv=16.6)
- Long duration event (up to 23 sec)
- Object diam 16 km

 Possible real-time updates?

Occult 4.10.4.0, MP Corb 2020Mar19 Errors: Star+Peak Ephem Uncert

- Beethoven wrote a nice piece of piano music about the moon...
- Moon dates and twilight avoidance is necessary for faint stars
- Search whole sky during new moon
- moon (first quarter)
- Avoid Full moon +/- 2 days altogether

• (PS: This year is the 200th anniversary of Beethoven's death)

Musical interlude

• Search evening fields during waning moon (last quarter), morning during waxing

More Beethoven

• Sept 17, 2020 (am)

- Faint star (mv=16.5)
- Long duration event (up to nearly 7 sec)
- Object diam 16 km
- NO MOON

- diameter
- Predictions generated for a 15 degree wide band, 1 month period
- Predictions over water or complete misses are removed by hand
- OCCULT filter function can be used to sort by geographical region
- For particular areas and regions this could be optimised with smaller filter areas

RESULTS!

Subset of main belt asteroids used (9000 - 27000 objects), up to 50 km

Typical result statistics

- Time period: 30 days
- 9211 objects
- 1 field 10 x 15 deg at quadrature
- 53 events
- Paths checked manually
- At least half are faint stars or small objects

Example results • Mostly Gaia stars

- >9000 main belt Asteroids used, 53 events all < 20 km
- Faint stars dominate (one TYC star mag 9.9)
- Long duration event (up to nearly 7 sec)
- Multiple events for same object
- None in Steve Preston's list

	• • •	
	File	∯↓ Sort events (
	List events	E. Long. Visible from: 9.357
	53 events	Distance of site from p
	Save listed	Local altitude >
	Globa	l summary of events -
	Date	U.T. Diamete

Date Date		U.T.		Diar	Diameter	
У	m	d	h	ш	km	п
2020	Apr	15	0	34.3	11	0.007
2020	Apr	15	1	41.4	11	0.008
2020	Apr	15	4	44.7	11	0.008
2020	Apr	16	23	46.8	18	0.009
2020	Apr	17	2	47.9	11	0.008
2020	Apr	17	6	42.4	10	0.005
2020	Apr	17	11	6.1	11	0.005
2020	Apr	17	16	42.6	18	0.009
2020	Apr	17	21	42.5	10	0.005
2020	Apr	18	16	5.0	10	0.007
2020	Apr	19	6	50.5	14	0.011
2020	Apr	19	14	5.2	10	0.005
2020	Apr	19	19	19.8	10	0.007
2020	Apr	20	8	2.9	11	0.005
2020	Apr	22	1	43.8	17	0.010
2020	Apr	23	2	20.6	11	0.005
2020	Apr	26	14	8.0	14	0.010
2020	Apr	26	18	32.5	17	0.010
2020	Apr	26	22	12.6	11	0.007
2020	Apr	26	23	49.3	28	0.015
2020	Apr	27	7	35.7	11	0.007
2020	Apr	27	16	15.3	12	0.007
2020	Apr	28	1	52.5	18	0.011
2020	Apr	29	9	6.1	18	0.011
2020	Apr	30	8	50.4	12	0.008
2020	Anr	30	16	44 8	12	0 008

Durn Star Mag-Drop Elon % Star d Planet Min Error Dist ill 🛛 No. No Name sec/m mag o Ill D v R 2.25 16.4 1.9 2.0 132 G103555.3+065903 3827 Zdenekhorsky 138 49 0.08 ±0.01 33307 1998 KX52 0.29 ±0.01 142 49 1.9s 14.5 3.5 3.6 130 G102445.3+074641 008 1.95 16.2 2.0 G102445.5+074727 33307 1998 KX52 008 2.0 129 0.02 ±0.01 143 48 3.6s 16.9 1.4 1.7 129 G103215.1+073057 3852 Glennford 0.10 ±0.01 009 0.56 ±0.01 1.9s 15.4 2.8 2.8 127 G102453.5+075837 33307 1998 KX52 166 29 008 3.5 G104325.6+082719 17573 1994 PJ13 005 1.85 16.2 3.2 131 0.87 ±0.01 165 28 2.0s 14.7 4.4 G104116.9+055528 0.22 ±0.01 005 4.8 132 56299 1999 RT47 165 26 3.3s 16.7 1.9 2.2 127 169 24 009 G102303.0+053024 8701 1993 LG2 0.75 ±0.01 1.7s 16.6 2.3 2.5 135 G105606.9+054927 90456 2004 CV2 0.55 ±0.02 167 23 005 4.8s 16.6 1.9 2.2 132 G105247.9+081428 31334 1998 HW102 0.88 ±0.01 176 17 07 G102424.1+053115 47050 1998 WN20 5.1s 17.0 0.9 1.3 126 0.20 ±0.01 165 13 011 2.2s 14.3 5.0 5.1 129 G104256.1+083042 17573 1994 PJ13 0.40 ±0.01 005 167 11 6.0s 16.7 1.7 2.0 31334 1998 HW102 007 131 G105240.1+081522 0.46 ±0.01 167 10 1.7s 15.5 4.1 G105705.8+084443 27687 1981 EM23 005 4.3 131 0.86 ±0.01 161 3.6s 15.7 2.0 2.0 120 G101258.8+060144 5290 Langevin 0.92 ±0.01 131 1 010 3.45 16.2 G104007.5+055742 56299 1999 RT47 0.73 ±0.02 137 005 3.1 3.3 126 3.0s 15.9 1.8 010 1.9 119 G102605.0+054312 47050 1998 WN20 0.43 ±0.01 3.2s 15.6 2.1 2.2 116 G101346.5+061757 5290 Langevin 0.60 ±0.01 010 1.8s 14.9 3.3 33307 1998 KX52 0.59 ±0.01 3.6 118 G102654.8+084445 07 7.45 16.7 0.8 0.9 116 G101204.2+053742 3471 Amelin 015 0.47 ±0.01 0.13 ±0.01 1.7s 9.9 8.4 7.9 118 TYC 838-01101-1 33307 1998 KX52 07 1.6s 16.3 2.2 2.7 111 G100024.0+091313 105339 2000 QL91 0.08 ±0.01 07 7911 Carlpilcher 3.5s 16.7 1.5 1.8 112 0.76 ±0.02 G100435.7+084238 011 0.62 ±0.02 3.2s 16.5 1.6 1.8 111 G100446.8+083720 7911 Carlpilcher 39 34 011 4.2s 16.8 1.6 2.2 122 208 G105702.2+072850 8828 1988 RC7 0.99 ±0.01

G105702 3+072941

8828 1988 BC7

0 40 +0 01 34 48

How to observe? A 'deep' feed can produce many predictions - probably too many for

- Occultwatcher
- Target audience: Semi-professional facilities with 0.5 m class telescopes
- Mobile observations will be difficult for mag > 15.0
- With small objects and faint stars, unlikely to have multiple chords aim is set bounds on object size, not profiles
- Stationary point events could allow longer integration times
- How to observe fast events? (< 1 second?)

Conclusions • A 'deep' feed can produce many predictions - probably too many for

- Occultwatcher
- Target audience: Semi-professional facilities with 0.5 m class telescopes
- The star catalog and asteroid list must be carefully chosen, results have to be carefully filtered
- Directed searches for Trojan/Hilda events could also be interesting
- Some advantages to using a R.A. limited star catalog can be fine tuned to specific requirements
- At least half the events found are faint stars or small objects

Thanks for your attention!

More recent results

More recent results

Num Asteroids	Star field	Total events	Notes	Events/day
	(Mag. 14-17 unless indicated)			
9211	Gaia1417(Test)	53 events	MB only,15 – 50 km size \rightarrow expect 10 000 / yr?	
9211	4B (Leo/Vir)	151 events	10km min size, Dur. Max 1.5 s, Mag drop > 0.3m; roughly 1/3 over noninhabited areas	
9211	6A (Vir/Lib)	>821 events in 2 month period	10km min size, Dtmax 1.5 s, Mag drop > 0.5m;	13.68
3867	6A (Vir/Lib)	82 events in 1 month period	7km min size, Dtmax 1.5 s, Mag drop > 0.5m;	2.73
3867	6A (Vir/Lib)	128 events in 1 month period	7km min size, Dtmax 1.0 s, Mag drop > 0.2m;	4.27
16583	6A (Vir/Lib)	287 events in 1 month period (60 events moonlit)	10km min size, Dtmax 1.0 s, Mag drop > 0.2m; Most events < 2 sec long	9.57
16583	4B (Leo/Vir)	110 events in 1 month period (roughly 60 are brighter than mag 16)	7km min size, Dtmax 1.0 s, Mag drop > 0.5m;	3.67
16583	8A (Aqr) – am	321 events in 12 day period	7km min size, Dtmax 1.0 s, Mag drop > 0.5m;	26.75
16583	8B (Psc) – am	299 events in 12 days	7km min size, Dtmax 1.0 s, Mag drop > 0.4m;	24.92
16583	7B (Cap) – am	463 events in 12 days	7km min size, Dtmax 1.0 s, Mag drop > 0.4m;	38.58
16583	5A (Vir) – pm	124 events in 15 days	as above	8.27
16583	5B (Vir) – pm	253 events in 15 days	as above	16.87
16583	6B (Vir) – pm	1341 events in 15 days	as above	89.40
16583	7A (Vir) – pm	1073 events in 15 days	as above	71.53
127346	6A (Vir/Lib) = STATIONARY PT	2219 in 30 days (676 events brighter than 16m, longest event 24 s)	objects above 3 km , Duration > 1 sec, mag drop 0.5 m	73.97
3000	6A (Vir/Lib) = pm STATIONARY PT	591 events in 30 days (longest event 70 s, 67 objects; probably only ca 100 usable)	larger obj only , Duration > 1 sec, mag drop 0.5 m	19.70

2000

Thank YouRobert Purvinskis, ESOP-39, August 2020